Involvement of SIK3 in Glucose and Lipid Homeostasis in Mice
نویسندگان
چکیده
Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3(-/-) mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3(-/-) mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3(-/-) mice. Lipid metabolism disorders in Sik3(-/-) mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice.
منابع مشابه
Feeding and Fasting Signals Converge on the LKB1-SIK3 Pathway to Regulate Lipid Metabolism in Drosophila
LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosop...
متن کاملEffect of nano-magnesium oxide on glucose concentration and lipid profile in diabetic laboratory mice
Nano-sized drugs have better distribution than their identical forms. Magnesium is the cofactor of various enzymes in lipid and glucose metabolism. In this study the effect of nano-magnesium oxide (nano-MgO) on glucose concentration and lipid profile in diabetes induced mice was evaluated in 21 laboratory mice. Mice were divided randomly into three equal groups (control, treatment and placebo)....
متن کاملAllantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions
Objective(s): Non-alcoholic steatohepatitis (NASH) is defined by steatosis and inflammation in the hepatocytes, which can progress to cirrhosis and possibly hepatocellular carcinoma. However, current treatments are not entirely effective. Allantoin is one of the principal compounds in many plants and an imidazoline I receptor agonist as well. Allantoin has positive eff...
متن کاملThe total flavonoids from Selaginella tamariscina (beauv.) Spring improve glucose and lipid metabolism in db/db mice
Objective(s): This study aimed to investigate the glucose and lipid metabolism improving effect of the total flavonoids from Selaginella tamariscina (Beauv.) Spring (TFST) on db/db mice, and to study its mechanism of action.Materials and Methods: The db/db mice were divided into 5 groups: the normal group (NC), the diabetic group (DM), t...
متن کاملA Hormone-Dependent Module Regulating Energy Balance
Under fasting conditions, metazoans maintain energy balance by shifting from glucose to fat burning. In the fasted state, SIRT1 promotes catabolic gene expression by deacetylating the forkhead factor FOXO in response to stress and nutrient deprivation. The mechanisms by which hormonal signals regulate FOXO deacetylation remain unclear, however. We identified a hormone-dependent module, consisti...
متن کامل